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B. Sc. Vth Semester Physics-XV 

Ch. 3. Wave Particle Duality 

1. Introduction:  

The phenomenon of interference and diffraction which are results of interaction 

of light with several other phenomena such as reflection, refraction and 

polarisation are explained on the basis of wave theory. These phenomena prove 

that light possesses wave nature. On the other hand, the phenomena of black 

body radiation, photoelectric effect and Compton effect, which are the result of 

interaction of radiation with matter cannot be explained by wave theory. For 

explaining them, we consider radiant energy as a stream of small bundles of 

energy hν which are called quanta or photons. It proves that light possesses 

particle nature. Thus in certain events radiation shows particle like character, 

when a light beam is diffracted by grating it shows wave like character but 

when it causes an emission of photoelectrons from a surface, it shows particle 

like character. This shows that radiation possesses dual character behaving as a 

wave in one situation and as a particle in other situation. 

2. De Broglie’s Hypothesis of Matter Waves:  

Louis de Broglie in 1924 put forward theory of matter that matter also shows 

dual nature. His hypothesis of dual nature of matter based on two assumptions:- 

i) The whole energy in universe is in form of electromagnetic radiations 

and matter. 

ii) The nature is symmetrical i.e. matter and energy must be symmetrical 

that means radiations having dual nature, matter must also posses dual 

nature i.e. wave as well as particle. 

Matter considered to be made up of discrete particles such as atoms and 

molecules may also behave like wave under proper conditions called as matter 
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waves. The wave nature radiation has been well established by the phenomenon 

of diffraction and interference. Electrons, light rays or X-rays have also been 

shown to exhibit the diffraction phenomenon. This leads to view that electrons 

like light may also have wave properties associated with them. It means an 

electron has dual nature i.e. particle and wave. 

Consider a moving particle; it has wave properties associated with it. The 

wavelength λ associated with momentum p then we have, 

� = ℎ� = hmv 

Where m is mass of particle moving with velocity v. 

We know that the relativistic mass is, 

     	 = 	

�1 − v�c�

 

The waves associated with moving particles are known as matter waves. 

Proof of De Broglie Wavelength:  

By using plank’s theory of radiation, the energy of photon is E = hν  where h is 

plank’s constant and ν is frequency of radiation. 

But frequency of radiation v = c/λ where c is velocity of light and λ be 

wavelength. 

�� = ℎ��   − − − − − − − (1) 

If a particle of mass m is converted into energy, the equivalent energy is given 

by Einstein mass-energy relation as, 

� = 	��   − − − − − − − (2) 
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Equating eqn(1) and eqn(2), 

ℎ�� = 	��     � � = ℎ	�      − − − − − (3) 

But mc = p be momentum associated with quanta. 

� � = ℎ�     − − − − − − − (4) 

De Broglie suggested that eqn(4) is a completely general one that applies to 

material particle as well as photons. 

 The momentum of particle of mass m and velocity v is p = mv 

Therefore De Broglie Wavelength is, 

� = ℎ	v 

Let Ek is kinetic energy of material particle then 

�� = 12 	v� = 12 	�v�	 = ��2	 

��� = 2	�� 

�� = �2	�� 

De Broglie wavelength in terms of kinetic energy is written as  

� = ℎ� = ℎ�2	��   − − − − − −(5) 

If material particle are in thermal equilibrium at associated temperature T then, 

�� = 32 �� 

Where K is Boltzmann constant = 1.38×10-23J/0K. 



Dr. A. S. Padampalle, S C S College, Omerga. 

 

4 

 

∴ De Broglie wavelength is,  

� = ℎ�2	�� = ℎ√3	��  − − − − − −(6) 

If a charged particle carrying charge q is associated through a potential 

difference V then kinetic energy is Ek = qV. 

∴ De Broglie wavelength is,  

� = ℎ�2	�� = ℎ�2	��  − − − − − −(7) 

3. Phase Velocity or (Wave velocity) of De Broglie Wave: 

A wave is a disturbance from equilibrium condition that travels with time from 

the region of space to another. The particle begins to vibrate about mean 

position. There is a progressive change of phase from one particle to the next. 

The phase relationship of these particles is called as wave and the velocity with 

which planes of constant phase propagates through medium is known as wave 

velocity or phase velocity. 

Consider the equation of plane progressive wave, 

! = " #$% (&' − ()) 

Where & = �*+ = 2,-   is angular frequency and  

( = �*:  is propogation constant  
The term (wt-kx) represents the phase of wave motion. Hence, planes of 

constant phase are written as,  

wt-kx = constant. 
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Differentiate with respect to t, we get 

& − ( >)>' = 0 

>)>' = &( = �@ 

Where Vp is called as phase velocity or wave velocity. 

� phase velocity  �@ = &(  − − − − − −(1) 

phase velocity  �@ = 2,-2, �A = -� − − − − − −(2) 

De Broglie wavelength of material particle is given by, � = BCD 

Let E is energy of wave and E = hν then its frequency is ν =E/h 

� phase velocity  �@ = �ℎ ℎ	� = �	� 

From Einstein mass energy relation E = mc2  

� phase velocity  �@ = 	��	� = ���  

Since c >> V i.e. particle velocity is always less than the velocity of light. 

Therefore, the De Broglie wave velocity Vp must be greater than velocity of 

light c. 
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4. Group Velocity:-  

 

Consider two waves that have the same amplitude A but differ by angular 

frequencies and propagation constant as shown in figure. 

Le w and ∆w be angular frequencies; k and ∆k be propagation constant. 

∴ Equations of waves are, !E = F cos(&' − ())     "%>         !� = F cos[(& + Δ&)' − (( + Δ())] 
The superposition of the two waves will give a single wave packet or group 

velocity. Let us find the velocity Vg with which the wave group travels. 

The resultant displacement at any time t and any position x is given by,  

! = !E + !� 

! =  F cos(&' − ()) + F cos[(& + Δ&)' − (( + Δ())] 
 By using relation, 

�K#L + �K#M = 2 cos NL + M2 O . cos NL − M2 O 

�! = 2F cos Q&' − () + (& + R&)' − (( + R())2 S × 

cos Q&' − () − (& + R&)' + (( + R())2 S 
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= 2F �K# U&' − () + &' + Δ&' − () − Δ()2 V × 

�K# U&' − () − &' − Δ&' + () + Δ()2 V 
= 2F cos U2&' − 2() + ∆&' − ∆()2 V × cos U−∆&' + ∆()2 V 

! = 2F cos Q(2& + ∆&)' − (2( + ∆())2 S × cos U∆&' − ∆()2 V 
Since ∆w and ∆k are very small as compared with w and k respectively. 

         ∴ 2w + ∆w ≈ 2w     and      2k+∆k ≈2k 

�! = 2F cos U2&' − 2()2 V . cos U∆&' − ∆()2 V 
! = 2F cos U∆&2 ' − ∆(2 )V cos[&' − ()] − − − − − −(1) 

This is analytical expression for resultant wave due to superposition of two 

waves. The quantity 2F cos[∆X� ' − ∆�� )] is considered to be an amplitude of 

wave which varies with x and t. This variation of amplitude is called modulation 

of wave. 

Hence eqn(1) represent a wave of angular frequency w and wave number k that 

is superimposed upon it a modulation of angular frequency ½ ∆w.  

The velocity Vg of wave group is, 

�Y = ∆&∆(  

When w and k have continuous, the group velocity is  
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�Y = >&>(  

This is expression of group velocity. 

5. Relation between group velocity and particle velocity: 

According to De Broglie hypothesis, a particle moving with a velocity v is 

supposed to consist of a group of waves. 

The group velocity is given by,  

�Y = >&>(  

The angular frequency of De Broglie waves associated with a particle of rest 

mass m0 moving with velocity v is given by,  

& = 2,-                          
But � = ℎ- = 	�� 
�- = 	��ℎ  

�                   & = 2,	��ℎ  

The relativistic mass of particle moving with velocity v is  

	 = 	

�1 − v�c�

 

�   & = 2,	
��
ℎ�1 − v���

    − − − − − − − − − − − −(1) 

Differentiate eqn(1) with respect to v, we get 



Dr. A. S. Padampalle, S C S College, Omerga. 

 

9 

 

>&>v = 2,	
��ℎ >>v Q1 − v���S[E �A
 

= 2,	
��ℎ \− 12 ]1 − v���^[_ �A . − 2v��` 

>&>v = 2,	
v
ℎ N1 − v���O_ �A     − − − − − − − − − − − −(2) 

We know that propagation constant, ( = 2, �A     ab' � = ℎ 	vA   

( = 2,	vℎ = 2,	
v
ℎ�1 − v���

 

Differentiate with respect to v, we get 

>(>v = 2,	
ℎ >>v ⎣⎢
⎢⎡ v
�1 − v�c�⎦⎥

⎥⎤ 

= 2,	
ℎ
⎣⎢
⎢⎢
⎢⎢
⎡�1 − v�c�  .1 − v. 1

2�1 − v���
 . −2v��

1 − v�c�
⎦⎥
⎥⎥
⎥⎥
⎤
 

= 2,	
ℎ
⎣⎢
⎢⎢
⎢⎢
⎡�1 − v�c� + 1

�1 − v���
 . v���

1 − v�c�
⎦⎥
⎥⎥
⎥⎥
⎤

= 2,	
ℎ ⎣⎢
⎢⎢
⎡1 − v��� + v���
N1 − v�c�O_ �A ⎦⎥

⎥⎥
⎤
 



Dr. A. S. Padampalle, S C S College, Omerga. 

 

10 

 

>(>v = 2,	

ℎ N1 − v�c�O_ �A  − − − − − − − (3) 

The group velocity of De Broglie wave associated with particle is given by 

�Y = >&>( = 2,	
v
ℎ N1 − v���O_ �A  × ℎ N1 − v�c�O_ �A

2,	
  

�Y = v 

This is relation between group velocity and particle velocity. This shows that 

De Broglie wave group associated with a moving particle travels with same 

velocity as that of particle. 

6. Relation between group velocity (Vg ) and phase velocity (Vp ): 

We know that, phase velocity Vp =w/k and group velocity Vg = dw/dk 

The wave number, 

  

( = 2,�          �>(>� = −2,��   − − − − − −(1) 

And angular frequency,  

& = 2,- = 2,�@�  

�  >&>� = 2, >>� U�@� V = 2, U−�@�� + 1� . >�@>� V 

�  >&>� = − 2,�� U�@ − � >�@>� V − − − − − −(2) 
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Dividing eqn(2) by eqn(1) we get 

>&>( = >& >�A>( >�A = − 2,�� U�@ − � >�@>� V−2,��
 

>&>� = �@ − �. >�@>�  

�Y = �@ − �. >�@>� − − − − − − − (3) 

This is relation between group velocity and phase  velocity. 

From eqn(3) following two cases arises 

Case I: For dispersive medium 

Phase velocity Vp is function of wavelength λ i.e. Vp= f(λ). Usually dVp/dλ is 

positive. Therefore, Vg < Vp. This is case of De Broglie waves. 

Case II: For non- dispersive medium 

Phase velocity Vp is not function of wavelength λ i.e. Vp≠ f(λ).  

Then  
>�@ >�A = 0      ��Y = �@    

This result is true for electromagnetic waves in vacuum.     
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7. Davisson and Germer’s experiment:         

 

Figure 1. Experimental set up of Davisson Germer's experiment 

The experimental arrangement to study matter waves as shown in Fig 1. The 

whole set-up is enclosed in an evacuated chamber. It consists of an electron gun 

which produce electron by heating a filament (F) by a low tension battery 

(L.T.). The electrons from gun are accelerated through vacuum to a desired 

velocity by applying a suitable accelerating potential to accelerating anode and 

are collimated into focused beam. This electron beam falls on a large single 

crystal of nickel. The electrons are scattered in all directions by the atoms in the 

crystal. The detector can be moved to any angle φ relative to incident beam. The 

energy of the electrons in the primary beam, the angle at which they reach the 

target and position of detector could all be varied. 
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Experimental Procedure:  Initially very low accelerating potential V is given 

to an accelerating anode by using high tension battery (H.T.). The beam of 

electron falls normally on the surface of the crystal. The detector is moved to 

various positions and the intensity of diffracted beam at each position is noted. 

The intensity of diffracted beam is plotted against the angle between the 

incident beam and beam entering the detector. The method of plotting is such 

that the intensity at any angle is proportional to the distance of the curve at that 

angle from the point of scattering. The observations are repeated for different 

accelerating voltages.  The intensity of the scattered electrons is not continuous. It 

shows a maximum and a minimum value corresponding to the maxima and the 

minima of a diffraction pattern produced by X-rays. It is studied from various 

angles of scattering and potential difference.  

 

Figure 2 shows typical polar graphs of electrons intensity. From graphs we 

observed that, 

i) The graph remains fairly smooth till the accelerating voltage becomes 

44V and then bump appears on the curve. 

ii) As the accelerating voltage is increased, the length of bump increases. 

iii) The bump becomes most prominent in the curve for 54V at angle φ = 50º.  

iv)  As the accelerating voltage is further increased the bump decreases in 

length and finally disappears at 68V.  



Dr. A. S. Padampalle, S C S College, Omerga. 

 

14 

 

For nickel, the spacing of the atomic planes which can be measured by X-ray 

diffraction is d =0.91nm. There is an intense reflection of the beam at angle 

φ = 50º. 

The angle of incidence relative to Bragg planes is, 

i = 180
 − 50
2 = 130
2 = 65
 

The Bragg equation for maxima in the diffraction pattern is, 

%� = 2>#$%i 

For n=1, the De Broglie wavelength λ of diffracted electron is, 

� = 2 × 0.091 × 10[l × #$%65
 

= 0.182 × 0.9061 × 10[l 

� = 0.165 × 10[l = 0.165 %	 

The expected wavelength of electron can be calculated by using De Broglie’s 

formula. The electron kinetic energy is 54eV. The electron wavelength is, 

� = ℎ�2	�� 

� = 6.63 × 10[_m
√2 × 9.1 × 10[_E × 54 × 1.6 × 10[El 

= 6.63 × 10[_m
√1572.48 × 10[n
 = 6.63 × 10[_m39.65 × 10[�n 

� = 0.1672 × 10[l = 0.1672%	 

The observed wavelength agrees well with the expected wavelength. The 

Davisson Germer experiment thus directly verifies De Broglie’s hypothesis of 

the wave nature of moving bodies. 
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8. Heisenberg’s Uncertainty Principle: 

Statement: It is impossible to determine precisely and simultaneously the 

values of both the numbers of a pair of physical variables which describe the 

motion of an atomic system. Such pairs of variables are called as canonically 

conjugate variables. 

According to this principle, the position and momentum of a particle (say 

electron) cannot be determined simultaneously to any desired degree of 

accuracy. 

Let ∆x as the error in determining its position and ∆p be error in determining its 

momentum at the same instant, these quantities are related as, 

∆). ∆� ≥ ℏ 2         A Where ℏ = ℎ 2,A  

The product of the two errors is approximately of the order of plank’s constant. 

If ∆x is small, ∆p will be large and vice versa. It means that if one quantity is 

measured accurately the other quantity becomes less accurate. Thus any 

instrument cannot measure the quantities more accurately than predicated by 

Heisenberg’s principle of uncertainty. 

The time-energy Uncertainty Principle: 

Another form of the uncertainty principle is sometimes useful. Suppose 

we wish to measure the energy E emitted sometime during the time interval ∆t 

in an atomic process. If the energy is in the form of electromagnetic waves, the 

limited time available restricts the accuracy with which we can determine the 

frequency ν of the waves. Since the frequency is the reciprocal of time period, 

the uncertainty ∆ν in our frequency measurement is 

 ∆ν = 1/(∆t)      (1) 

The corresponding energy uncertainty is 

  ∆E = h ∆ν 
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Using equation (1), we have 

             ∆E = h/(∆t) 

or  ∆E .∆t = h 

A more realistic calculation changes above equation to 

∆E. ∆t ≥ ħ/2      (2) 

This equation states that the product of the uncertainty ∆E in an energy 

measurement at any instant and the uncertainty ∆t in the time measured at the 

same instant is equal to or greater than ħ. 

The principle of uncertainty can also be expressed in terms of angular 

momentum and angular displacement i.e. ∆i. ∆qr ≥ ℏ 2.A  

Proof:  

Suppose we try to measure the 

position and linear momentum of an 

electron using an imaginary 

microscope with a very high resolving 

power as shown in figure. 

The resolving power of microscope is 

given by,  

∆) = �2 #$%i 

Where ∆x is distance between two points which can be just resolved by 

microscope. This is the range in which electron would be visible when disturbed 

by photon. Hence ∆x is the uncertainty involved in the position measurement of 

the electron. 

 However, the incoming photon will interact with the electron. To able to 

see this electron, the scattered photon should enter the microscope within the 

angel 2θ. 

The momentum imparted by the photon to electron by order of h/λ. The 

component of this momentum along OA is -hsinθ/λ and along OB is hsinθ/λ. 
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Hence uncertainty in the momentum measurement in the X-direction is, 

Δ�s = ℎ #$%i� − N− ℎ #$%i� O = 2ℎ #$%i�  

�Δ). Δ�s = �2 #$%i × 2ℎ #$%i� = ℎ 

A more approach will shows that ∆). ∆� ≥ ℏ 2A  , where ℏ = ℎ 2,A  . 

Applications of Uncertainty Principle:- 

i) Non-existence of the electrons in the nucleus: 

The non-existence of electron in nucleus is proved by comparing the energy 

needed to an electron to exist in nucleus.   

The nucleus of typical atoms have radius 10-14m. If electron is confined to the 

nucleus the maximum possible uncertainty in its position may be ≈ 2× radius of 

nucleus. 

∆x ≈ 2×10-14 m. 

The uncertainty in the momentum of electron will be, 

∆� = ℏ∆) = ℎ2,�) 

= 6.63 × 10[_m2 × 3.14 × 2 × 10[Em = 6.6312.56 × 10[�
 

= 0.5278 × 10[�
 = 5.278 × 10[�E    �t − 	/#v� 

The kinetic energy of the electron of mass m is given by, 

�� = ��2	 

=  (5.278 × 10[�E)�2 × 9.1 × 10[_E = 27.8256 × 10[m�18.2 × 10[_E  
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= 1.5289 × 10[EE w 

�� = 1.5289 × 10[EE1.6 × 10[El  v� 

�� = 0.9556 × 10x = 95.56yv� ≈ 97yv� 

Therefore, if the electron exists in the nucleus, it should have energy of the 

order of 97MeV. However, it is observed that electrons ejected from the nucleus 

during β –decay have energies of approximately 4MeV, which is quite different 

from the calculated value of 4 MeV. Second reason that electron cannot exist 

inside the nucleus is that experimental results show that no electron or particle 

in the atom possess energy greater than 4 MeV. 

ii) Binding energy of an electron in an atom:  

Binding energy of an electron in an atom is minimum energy required to free 

electron from the surface. 

 Suppose hydrogen atom has radius 5.3×10-11m. Therefore uncertainty in 

position is ∆x = 5.3×10-11m 

The uncertainty in the momentum of electron will be, 

∆� ≥ ℏ∆) ≥ ℎ2,�) 

≥ 6.63 × 10[_m2 × 3.14 × 5.3 × 10[EE ≥ 6.6333.284 × 10[�_ 

≥ 0.199 × 10[�_    �t − 	/#v� 

An electron whose momentum is of this order of magnitude behaves like a 

classical particle and its kinetic energy is  
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�� ≥ ��2	 

=  (0.199 × 10[�_)�2 × 9.1 × 10[_E = 0.0396 × 10[m{18.2 × 10[_E  

= 0.002176 × 10[En w 

�� = 0.002176 × 10[En1.6 × 10[El  v� 

�� = 0.00136 × 10m = 13.6v� 

The kinetic energy of an electron in the lowest energy level of a hydrogen atom 

is 13.6eV which is binding energy. 

Problems:  

1. Find the velocity of electron whose De Broglie wavelength is 1.2Å. (h = 

6.63×10-34 J-S). 

Given: λ = 1.2 Å = 1.2 ×10-10m, h = 6.63×10-34 J-S 

Mass of electron m = 9.1×10-31 kg,  V = ? 

We know that De Broglie wavelength is given by, 

� = ℎ	} 

Velocity of electron is, 

} = ℎ	� = 6.63 × 10[_m9.1 × 10[_E × 1.2 × 10[E
 

} = 6.6310.92 × 10~ = 0.6071 × 10~ = 6.071 × 10{	 

2. Calculate the De Broglie wavelength of an electron accelerated through 

20000V.  

Given : V = 20000V, λ=? 

De Broglie wavelength of an electron having energy E is given by, 
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� = ℎ√2	� 

But E = qV where V is potential difference and q be charge on electron. 

� = ℎ�2	�� 

� = 6.63 × 10[_m
√2 × 9.1 × 10[_E × 1.6 × 10[El × 20000 

= 6.63 × 10[_m
√58.24 × 10[m{ = 6.63 × 10[_m7.4324 × 10[�_ 

� = 0.892 × 10[EE 	 = 0.0892Å  

3. A neutron is an uncharged particle of mass 1.67×10-27 kg. Calculate the De 

Broglie wavelength associated with it if its kinetic energy is 0.04eV. 

Given: m = 1.67×10-27 kg,  

E = 0.04eV = 0.04×1.6×10-19 J = 0.064×10-19 J 

We know that, De Broglie wavelength having in terms of kinetic energy is  

� =  ℎ√2	� 

� = 6.63 × 10[_m
√2 × 1.67 × 10[�~ × 0.064 × 10[El 

= 6.63 × 10[_m
√0.2138 × 10[m{ = 6.63 × 10[_m0.4624 × 10[�_ 

= 14.34 × 10[EE	 = 1.434 Å 

4. Calculate De Broglie wavelength of matter waves associated with a ball 

of mass 0.2 kg moving with a velocity of 20 m/s. 

Given: λ=? , m =0.2 kg and v = 20 m/s. 

We know that De Broglie wavelength 

� = ℎ	} 

= 6.63 × 10[_m0.2 × 20  
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= 6.63 × 10[_m4 = 1.6575 × 10[_m	 

5. If the life time of an electronic excited state is 1×10-9 s, what is the 

uncertainty in the energy of the state? 

Given:  ∆t = 1×10-9 s, ∆E =? 

According to uncertainty principle, 

∆�. ∆' = ℏ 2A   

�∆� =  ℏ∆' × 2 = ℎ∆' × 4, = 6.63 × 10[_m1 × 10[l × 4 × 3.14 

�∆� =  6.63 × 10[�n12.56  

 

�∆� = 0.5278 × 10[�nw 

 

Multiple choice questions:  

1. According to De Broglie hypothesis electron has dual nature as 

a. Wave  b. particle  c. wave as well as particle  d. none of these 

2. The De Broglie wavelength associated with the particle of mass m 

moving  velocity v is given by 

a. h/mv   b. m/hv   c. mv/h   d. v/mh 

3. The De Broglie wavelength of a particle is related to its kinetic energy E 

as 

a. λ∝E   b.  � ∝ √�   c. λ∝1/E   d. � ∝ �/√� 

4. The wavelength of de Broglie waves associated by a particle of mass 10 

kg moving with velocity 5m/s is  

a. 1.33×10-35 m  b. 1.33×10-34 m c. 5.33×10-35 m d. 1.33×10-33 m 

5. The relation between De Broglie phase velocity Vp and velocity of light 

C is  
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a. Vp = C  b. Vp > C  c. Vp <C   d. None of 

these 

6. Which of the following relation of De Broglie wavelength of associated 

particle is correct? 

a. � = ℎ/√2	� b. � = ℎ/√3	��  c. � = ℎ/�2	��  d. all of these 

7. The relation between group velocity Vg and particle velocity V is 

a. Vg = V   b. Vg > V  c. Vg<V  d Vg = V/C 

8. The relation between group velocity Vg and phase velocity Vp is 

a. �Y = �@ + �. �D��:     b. �� = �� − �. �����   

c. �@ = �Y − �. �D��:     d. �Y = �@  

9.  In Davisson and Germer experiment maximum intensity was observed 

for 

a. 54°, 50V   b. 64°, 40V   c. 50°, 54V   d. 44°, 50V 

10. In Davisson and Germer experiment, a crystal used to diffract the electron 

beam is- 

a. Sodium chloride  b. nickel  c. silver    d. copper 

11.  The main aim of Davisson and Germer experiment was to verify 

 a. the wave nature of light  b. the quantum nature of light 

 c. wave nature of electron d. negative charge on electron 

12.   In Davisson and Germer experiment, a detector can be rotated on a circular 

scale, the intensity of diffracted beam is 

a. remains constant    b. increases continuously 

c. decreases continuously   d. increases becomes maximum and 
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decreases 

13.An electron is having a kinetic energy of 50eV. Its de Broglie wavelength is 

a. 1.732Å   b. 2.5 Å   c. 4.414 Å  d. 6.5 Å 

14. The Heisenberg uncertainty principle is  

a. ��.��� ℏ/�    b. ��.�)� ℏ/2  

c. ��.�) = ℏ    d. ��.�) =  ℏ/2 

15. Which of the following Heisenberg uncertainty principle is correct? 

a. ��.�) �  ℏ/2     b. ��.�'� ℏ/2   

c. �qr .�i� ℏ/2     d. All of these  

 

16. The nucleus of typical atoms have radius  

a. 10-14m  b. 10-10m   c. 10-12m   d. 10-9m 

17. The duration of radar pulse is 10-6 s. The uncertainty in its energy will be— 

 a. 0 b. 1.05 × 10-35 J  c. 1.05 × 10-28 J   d. 1.05 × 10-21 J 

18. The uncertainty in position is 5.3×10-11m then uncertainty in momentum is 

a. 0.399 × 10[�_�t − 	/#  b. 4.99 × 10[�_�t − 	/# 

c. 0.199 × 10[En�t − 	/#   d. �. ��� × ��[���� − �/� 

19. According to Heisenberg uncertainty principle, the position and momentum 

of electron --- 

a. can be determined simultaneously  b. cannot be determined simultaneously 
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c. sometimes determined   d. none of these 

20. Uncertainty principle applies to— 

a. macroscopic particle    b. microscopic particle 

c. gases      d. none of these 

 

 

  

 

 

  


